CHARM SANOATI CHIQINDILARIDAN QISHLOQ XO‘JALIGI MAHSULOTLARINI QAYTA ISHLASHDA FOYDALANISH
Keywords:
Biopolimerlar, teri chiqindilari, tuproq, o‘g‘itlar, sanoat ekinlariAbstract
Ushbu maqolada charm sanoati chiqindilaridan qishloq xo‘jaligi mahsulotlarini qayta ishlashda foydalanishning afzalliklari va kamchiliklari ko‘rib chiqiladi. Teri chiqindilaridan olingan materiallar, ayniqsa, organik o‘g‘itlar, biopolimerlar va biochar kabi mahsulotlar ishlab chiqarish uchun ajoyib xom ashyo hisoblanadi. Charm chiqindilarini qayta ishlash orqali tuproq sifatini yaxshilash va barqaror qishloq xo‘jaligini rivojlantirish mumkin. Teri va charm chiqindilari tarkibida o‘simliklar uchun zarur bo‘lgan makro va mikroelementlar mavjud bo‘lib, ular tuproqni o‘g‘itlashda samarali foydalanilishi mumkin. Biopolimer asosidagi o‘g‘itlar, xususan, kollagenli va sintetik polimerlar bilan birikkan bioo‘g‘itlar, ozuqa moddalarining chiqarilishini sekinlashtiradi, bu esa tuproqning ifloslanishini kamaytirish va o‘simliklar o‘sishini yaxshilashga olib keladi. Shuningdek, charm chiqindilaridan olingan biochar tuproqning suvni saqlash xususiyatini oshiradi, mikrobiologik faoliyatni yaxshilaydi va o‘simliklarning o‘sishini rag‘batlantiradi. Ushbu usullarni qo‘llash orqali charm sanoati chiqindilarini ekologik xavfsiz va samarali tarzda qayta ishlash imkoniyati yaratiladi, shu bilan birga, chiqindilarni kamaytirish va qishloq xo‘jaligida barqarorlikni ta’minlashga yordam beradi.
References
1. George, A.; Sanjay, M.R.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol. 2020, 154, 329–338.
2. Udayakumar, G.; Muthusamy, P.; Selvaganesh, S.B.; Sivarajasekar, N.; Rambabu, K.; Banat, F.; Sivamani, S.; Sivakumar, N.; Hosseini-Bandegharaei, A.; Show, L.P. Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. J. Environ. Chem. Eng. 2021, 9, 105322.
3. Korhonen, J.; Snäkin, J.P. Quantifying the relationship of resilience and eco-efficiency in complex adaptive energy systems. Ecol. Econ. 2015, 120, 83–92.
4. Mattsson, B.; Cederberg, C.; Blix, I. Agricultural land use in life cycle assessment (LCA): Case studies of three vegetable oil crops. J. Clean. Prod. 2000, 8, 283–292.
5. Castro, C.; Logan, T.J. Liming effects on the stability and erodibility of some Brazilian oxisols. Am. J. Soil Sci. Soc. 1991, 55, 1407–1413.
6. Håkansson, I.; Medvedev, V.W. Protection of soils from mechanical overloading by establishing limits for stresses caused by heavy vehicles. Soil Tillage Res. 1995, 35, 85–97.
7. Awad, Y.M.; Lee, S.S.; Kim, K.-H.; Ok, Y.S.; Kuzyakov, Y. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers. Chemosphere 2018, 198, 40–48.
8. Zainescu, G.; Voicu, P.; Constantinescu, R.; Barna, E. Biopolymers from protein wastes used in industry and agriculture. Rev. Ind. Text. 2011, 62, 34–37.
9. Zainescu, G.A.; Stoian, C.; Constantinescu, R.R.; Voicu, P.; Arsene, M.; Mihalache, M. Innovative process for obtaining biopolymers from leather wastes for degraded soils remediation. In Proceedings of the 10th International Conference on Colloids and Surfaces Chemistry, Galati, Romania, 9–11 June 2011. Tal, A. Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture. Sustainability 2018, 10, 1078.
10. Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14.
11. FAO. Food and Agriculture Organization. Available online: http://www.fao.org/faostat/en (accessed on 25 January 2022).
12. Kılıc, O.; Boz, I.; Eryılmaz, G.A. Comparison of conventional and good agricultural practices farms: A socio-economic and technical perspective. J. Clean. Prod. 2020, 258, 120666.
13. Horue, M.; Berti, I.R.; Cacicedo, M.L.; Castro, G.R. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications—A review. Bioresour. Technol. 2021, 340, 125671. [Google Scholar] [CrossRef]
14. Rutz, A.L.; Shah, R.N. Protein Based Hydrogels in Polymeric Hydrogels as Smart Biomaterials, 1st ed.; Kalia, S., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 73–104.
15. Ucar, B. Natural biomaterials in brain repair: A focus on collagen. Neurochem. Int. 2021, 146, 105033.
16. Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K.W. Biomedical applications of polymer-composite materials: A review. Compos. Sci. Technol. 2001, 61, 1189–1224.
17. Sionkowska, A. Collagen blended with natural polymers: Recent advances and trends. Prog. Polym. Sci. 2021, 122, 101452.
18. Osmalek, T.; Froelich, A.; Tasarek, S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm. 2014, 466, 328–340.
19. Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46.
20. Mudgil, D.; Barak, S.; Khatkar, B.S. Guar gum: Processing, properties and food applications—A Review. J. Food Sci. Technol. 2014, 51, 409–418.
21. Van de Velde, K.; Kiekens, P. Biopolymers: Overview of several properties and consequences on their applications. Polym. Test. 2002, 21, 433–442.
22. Gu, B.H.; Doner, H.E. The interaction of polysaccharides with silver hill illite. Clays Clay Miner. 1992, 40, 151–156.
23. Chang, I.; Cho, G.C. Strengthening of Korean residual soil with β-1,3/1,6-glucan biopolymer. Constr. Build. Mater. 2012, 30, 30–35.
24. Chang, I.; Lee, M.; Tran, A.T.P.; Lee, S.; Kwon, Y.M.; Im, J.; Cho, G.C. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 2020, 24, 100385.
25. Liu, Y.; Chang, M.; Wang, Q.; Wang, Y.F.; Liu, J.; Cao, C.; Zheng, W.; Bao, Y.; Rocchi, I. Use of Sulfur-Free Lignin as a novel soil additive: A multi-scale experimental investigation. Eng. Geol. 2020, 269, 105551.
26. Chang, I.; Im, J.; Cho, G.C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 2016, 8, 251.
27. Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Abd Majid, M.Z.; Md Tahir, M.; Tonnizam Mohamad, E. Improvement of Problematic Soils with Biopolymer—An Environmentally Friendly Soil Stabilizer. J. Mater. Civ. Eng. 2017, 29, 04016204.
28. Orts, W.J.; Roa-Espinosa, A.; Sojka, R.E.; Glenn, G.M.; Imam, S.H.; Erlacher, K.; Pedersen, J.S. Use of synthetic polymers and biopolymers for soil stabilization in agricultural, construction, and military applications. J. Mater. Civ. Eng. 2007, 19, 58–66.